

ÍNDICE

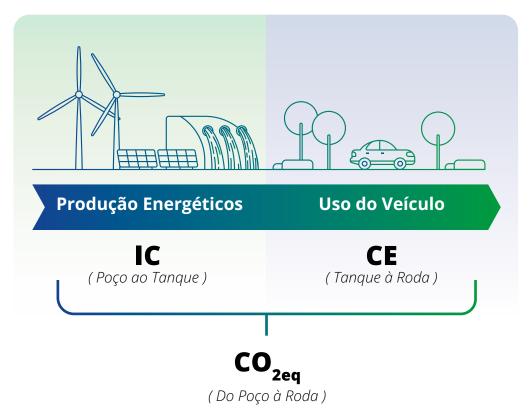
Introdução		
Instruções	05	
Cálculo "Passo a Passo"	06	
Veículos Mono Combustível (combustão ou híbrido) ou Elétrico	07	
Veículos Flex (combustão ou híbrido)	08	
Anexos	10	
Anexo 01	10	
Anexo 02	10	
Anexo 03	 10	

INTRODUÇÃO

A indústria automobilística mundial encontra-se em um dos momentos mais importantes de transformação tecnológica, resumida – em princípio – ao divisor de águas entre motores à combustão interna e elétricos. A AEA – Associação Brasileira de Engenharia Automotiva por meio desta cartilha traz ao setor e ao mercado brasileiro uma contribuição técnica inestimável, como sempre o fez nesses 38 anos de existência da entidade que reúne empresas do segmento, Governo, universidades, em trabalhos conjuntos com as demais entidades da cadeia.

O cálculo "Do poço à roda" leva em consideração a matriz energética brasileira que tem o privilégio de contar com cerca de 80% de energias renováveis (hidráulica, biomassa, eólica e solar) de sua matriz energética para mover a mobilidade e a produção, enquanto o restante do mundo, em média, desfruta-se de apenas 27% de renováveis ante 73% de energias não renováveis (gás natural, derivados de petróleo de carvão e nuclear).

INTRODUÇÃO

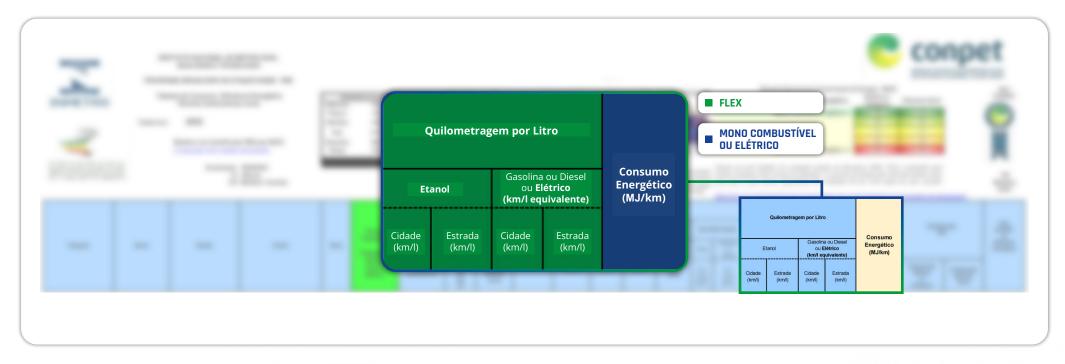

O conceito "Do poço à roda" tem sido amplamente discutido e será implementado no Rota 2030 fase 2 em 2027 para veículos leves. É um conceito mais amplo onde se avalia o impacto do setor de transporte de veículos leves nas emissões de gases de efeito estufa (CO₂).

Neste conceito se consideram as emissões de CO_2 na produção dos energéticos e do uso do veículo, que iremos denominar nesta cartilha como CO_{2eq} .

A AEA realizou dois importantes estudos para suportar o cálculo deste impacto: a metodologia de cálculo e a intensidade de carbono dos energéticos no Brasil em vários anos.

Nesta cartilha será mostrado um passo a passo de como calcular as emissões de CO_2 "Do poço à roda" (CO_{2eq}) baseado em dados públicos¹, de forma que toda a sociedade possa entender e calcular este impacto ambiental, além de compartilhar os conceitos.

¹ Veículos "híbridos plug-in" não são cobertos por esta cartilha pois com os dados públicos não é possível o cálculo das emissões "Do poço a roda".


INSTRUÇÕES

Para o cálculo das emissões de CO₂ "Do poço à roda" serão necessárias as seguintes informações:

- O consumo energético (no caso de mono combustível ou elétrico) ou da autonomia (no caso dos veículos flex). Esses dados podem ser consultados no site do INMETRO no Programa PBEV²;
- A intensidade de carbono dos energéticos conforme estudo realizado pela AEA coordenado pela EPE (vide anexo 1). A intensidade varia ao longo dos anos baseado nas projeções dos dados de produção dos energéticos. Escolha o ano em que deseja calcular as emissões;
- A densidade energética dos combustíveis conforme NBR 7094 (vide anexo 2);
- No caso de veículos flex, o fator de uso do etanol conforme estudo realizado pela AEA coordenado pela EPE (vide anexo 3). O fator de uso varia ao longo dos anos baseado na projeção de consumo de etanol hidratado.

² https://www.gov.br/inmetro/pt-br/assuntos/avaliacao-da-conformidade/programa-brasileiro-de-etiquetagem/tabelas-de-eficiencia-energetica/veiculos-automotivos-pbe-veicular

- I. Definir o veículo que se deseja calcular as emissões de CO_2 "Do poço à roda" (CO_{2eq}).
- II. Pesquisar no site do INMETRO no Programa PBEV³: o consumo energético (no caso de mono combustível ou elétrico) ou da autonomia (no caso dos veículos flex).

³ https://www.gov.br/inmetro/pt-br/assuntos/avaliacao-da-conformidade/programa-brasileiro-de-etiquetagem/tabelas-de-eficiencia-energetica/veiculos-automotivos-pbe-veicular

III. Calcular as emissões "do poço a roda".

As emissões do poço a roda para os veículos mono combustível ou elétrico é o produto da multiplicação do consumo energético pela intensidade de carbono do combustível:

EXEMPLOS (fonte: PBEV 2022 / Anexo 1 - 2020)

i. Veículo a gasolina (veículo pequeno de luxo)

$$CO_{2eq} = 2,29 \text{ MJ/km} * 77,52 \text{ g } CO_{2eq}/\text{MJ} = 178 \text{ g} CO_{2eq}/\text{km}$$

ii. Veículo a diesel (caminhonete)

Veículos Mono Combustível (combustão ou híbrido) ou Elétrico

$$CO_{2eq} = 2,54 \text{ MJ/km} * 82,40 \text{ g } CO_{2eq}/\text{MJ} = 209 \text{ g} CO_{2eq}/\text{km}$$

iii. Veículo elétrico (veículo pequeno)

$$CO_{2eq} = 0.46 \text{ MJ/km} * 31,77 \text{ g } CO_{2eq}/\text{MJ} = 15 \text{ gCO}_{2eq}/\text{km}$$

As emissões do poço a roda para os veículos flex é um pouco mais complexa de se calcular pois no site do INMETRO não está disponível o Consumo Energético de cada combustível.

Primeiramente será calculado o Consumo Energético com etanol (CE_{E100}) e com gasolina (CE_{E22}) baseado nos dados de autonomia de cada combustível em km/L do INMETRO:

(a) Dados INMETRO, * Conversão da autonomia ajustada conforme Portaria INMETRO 377/2011.

Depois se calcula as emissões do poço a roda, multiplicando o consumo energético de cada combustível pela sua intensidade de carbono (conforme Anexo 1) e pelo fator de uso (conforme anexo 3):

$$CO_{2eq} = CE_{E100} \times IC_{E100} \times FU + CE_{E22} \times IC_{E22} \times (1-FU)$$

ANEXO 1 ANEXO 3

EXEMPLOS (fonte: PBEV 2022 / Anexo 1 & 3 - 2020)

Veículo flex a combustão (veículo grande)

$$CE_{E100} = \begin{bmatrix} 20,09 / \\ \hline (1-(9,8*1,3466) \\ \hline (1-(9,8*0,0032389)) \end{bmatrix} \times 0,45 + \begin{bmatrix} 20,09 / \\ \hline (1-(10,9*0,0032389)) \end{bmatrix} \times 0,45 + \begin{bmatrix} 20,09 / \\ \hline (1-(10,9*0,0032389)) \end{bmatrix} \times 0,45 + \begin{bmatrix} 20,09 / \\ \hline (1-(10,9*0,0032389)) \end{bmatrix} \times 0,45 + \begin{bmatrix} 20,09 / \\ \hline (1-(11,9*0,0076712)) \end{bmatrix} \times 0,55 = 1,34 \end{bmatrix}$$

$$CE_{E22} = \begin{bmatrix} 28,99 / \\ \hline (1-(11,9*0,0032389)) \end{bmatrix} \times 0,45 + \begin{bmatrix} 28,99 / \\ \hline (1-(11,9*0,0076712)) \end{bmatrix} \times 0,45 + \begin{bmatrix} 28,99 / \\ \hline (1-(11,9*0,0076712)) \end{bmatrix} \times 0,55 = 1,25 \end{bmatrix}$$

$$CO_{2eq} = 1,72 \times 28,52 \times 0,28 + 1,68 \times 77,52 \times (1-0,28) = 108 \, gCO_{2eq}/km$$

Veículo hibrido flex (grande)

$$CE_{E100} = \left[20,09 \times \frac{(9,8 \times 1,3466)}{(1-(9,8 \times 0,0032389))}\right] \times 0,45 + \left[20,09 \times \frac{(8,3 \times 1,18053)}{(1-(8,3 \times 0,0076712))}\right] \times 0,55 = 1,72$$

$$CE_{E100} = \left[20,09 \times \frac{(10,5 \times 1,3466)}{(1-(10,5 \times 0,0032389))}\right] \times 0,45 + \left[20,09 \times \frac{(11,8 \times 1,18053)}{(1-(11,8 \times 0,0076712))}\right] \times 0,55 = 1,34$$

$$CE_{E22} = \left[28,99 / \frac{(15,4 * 1,3466)}{(1 - (15,4 * 0,0032389))} \right] x 0,45 + \left[28,99 / \frac{(17,9 * 1,18053)}{(1 - (17,9 * 0,0076712))} \right] x 0,55 = 1,25$$

$$CO_{2eq} = 1,34 \times 28,52 \times 0,28 + 1,25 \times 77,52 \times (1-0,28) = 80 \ gCO_{2eq}/km$$

ANEXOS

30%

	Intensidades de Carbono dos Energéticos (CO ₂ /MJ)						
ANEXO 1		2019	2020	2027	2032		
	Etanol hidratado (E100)	28,45	28,52	24,63	21,61		
	Eletricidade	34,22	31,77	22,58	26,62		
	Gasolina (E22)	77,54	77,52	76,9	76,44		
	Diesel B7	82,41	82,40	82,37	82,21		
ANEXO 2	Densidade Energética dos Combustíceis Conforme NBR 7094		S	MJ/L			
	Gasolina E22			28,99			
	Etanol Hidratado (E100)			20,09			
	Diesel			35,65			
ANEXO 3	Fatores de uso de etanol por energia (FU)⁴						
	2019	2020	202	7	2032		
⋖	30%	28%	38%	6	38%		

28%

⁴ Cálculo realizado a partir das demandas de energéticos (energia) ao longo dos anos. Demanda de Etanol sobre a Demanda Total de Combustíveis do Ciclo Otto.

38%

38%

